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Abstract. Percolation analysis is an efficient way of evaluating the connectivity of discrete fracture networks. Except for very 12 

simple cases, it is not feasible to use analytical approaches to find the percolation threshold of a discrete fracture network. The 13 

most commonly used percolation threshold corresponds to the occurrence of percolation on average for the set of parameters 14 

(p50), which is not adequate for applications in which a high confidence in the percolation threshold is required. This study 15 

investigates the direct relationships between the percolation threshold at low probability (p0, named as zero-percolation 16 

threshold) and the properties of fracture networks with one set of fractures (fractures with similar orientations) in two-17 

demensional domains. A generalized non-linear multivariate relationship between p0 and fracture network parameters is 18 

established based on connectivity assessments of a significant number of numerical simulations of fracture networks. A feature 19 

of this relationship is the invariant shape of marginal relationships. A comparison study with an analytical solution and 20 

applications in both synthetic and real fracture networks show that the derived relationship performs well in fracture networks 21 

of different sizes and orientations. A significant benefit of this relationship is that, when an analytical solution is not available, 22 

it can provide fast and reliable connectivity statistics of fracture networks based only on fracture parameters. 23 

Keywords: Percolation; percolation threshold; fracture network; connectivity; discrete fracture network. 24 

1 Introduction 25 

Discrete fracture networks (DFN) are widely used to model fracture systems in rock masses and reservoirs for flow analysis 26 

(Dogan, 2023; Kolyukhin, 2022; Liu et al., 2019). In three-dimensional DFNs, fractures are represented using simplified 27 

geometric shapes such as polygons, rectangles, disks, and others. In two-dimensional DFNs, fractures are simplified as line 28 
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segments (Dong et al., 2020). DFN models are generally considered to be more realistic representations of the fracture system 29 

and they are more amenable to integrating geological data into the flow model (Dong et al., 2018). Fracture connectivity 30 

analysis is a significant component in the DFN approach to assessing flow behaviour (Alghalandis et al., 2015; Einstein & 31 

Locsin, 2012) as the conductivities of fractures are generally magnitudes greater than those of the surrounding porous matrix 32 

(Thovert et al., 2017). A good understanding of the connectivity of fracture networks is essential for many applications such 33 

as oil and gas recovery, geothermal energy exploitation, hydrology and groundwater engineering, and geological storage of 34 

radioactive wastes. 35 

 Percolation theory (Jafari & Babadagli, 2013; Khamforoush & Shams, 2007; Or et al., 2023; Sun et al., 2023) provides a 36 

basis for describing and quantifying the connectivity of geometrically complex systems (Xu et al., 2007) such as fracture 37 

networks and this is reflected in many studies reported in the literature that use percolation theory in the connectivity analysis 38 

of fracture systems (Barker, 2018; de Dreuzy et al., 2000; Dong et al., 2022; Khamforoush & Shams, 2007; Manzocchi, 2002; 39 

Masihi & King, 2007; Mourzenko et al., 2012). Percolation describes the phenomenon in which there is at least one domain-40 

spanning pathway in a physical system (Tang et al., 2022; Yao et al., 2020; Yi & Tawerghi, 2009). Percolation in a DFN 41 

involves at least one cluster of connected fractures that spans the reservoir (McKenna et al., 2020) or rock mass (one cluster 42 

refers to a series of fractures which intersects each other). In this context, one of the most important characteristics of a fracture 43 

network is whether or not it percolates (Bour & Davy, 1998; Bour & Davy, 1997) and the percolation threshold is commonly 44 

used to quantify the critical value of connectivity at which the network percolates (Khamforoush & Shams, 2007; Manzocchi 45 

et al., 2023; Walsh & Manzocchi, 2021). Using this definition, the permeability of a fracture network is zero if the connectivity 46 

value is less than the percolation threshold (Mourzenko et al., 2005). 47 

 The percolation threshold of a DFN is a property that depends on the parameters of the fracture system (Mourzenko et 48 

al., 2005). Features previously used to characterise percolation in DFNs include the dimensionless density derived from the 49 

excluded volume (Barker, 2018; de Dreuzy et al., 2000; Khamforoush et al., 2008; Mourzenko et al., 2012), fractal dimensions 50 

(Jafari & Babadagli, 2013; Jafari & Babadagli, 2009; Zhao et al., 2016), topological connectivity measures (Manzocchi, 2002), 51 

fracture clustering (Manzocchi, 2002), and the average number of intersections per fracture (Manzocchi, 2002). These indirect 52 

characteristics of DFN models are derived from direct fracture network parameters, such as the number of fractures, fracture 53 

locations, sizes, and orientations, which have a joint effect on the occurrence of a percolating network (Jafari & Babadagli, 54 

2009). For example, if the fracture size is kept constant, an increase in the number of fractures will result in a higher fracture 55 

density, which in turn will increase the probability of a connected domain (Shokri et al., 2016). 56 

 There are many published studies on the percolation of DFN models, with different focuses on different aspects of the 57 

problem. For fracture locations, DFN models in these studies cover both the Poisson (homogeneous) distribution (Barker, 2018; 58 

Bour & Davy, 1997; de Dreuzy et al., 2000; Huseby & Thovert, 1997; Jafari & Babadagli, 2013; Khamforoush & Shams, 2007; 59 

Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Zhao et al., 2009; Zhao et al., 2016) and non-homogeneous (i.e., 60 
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spatially correlated) distributions (Manzocchi, 2002; Mourzenko et al., 2012). For fracture sizes, some DFNs use the 61 

monodisperse model, which means that the shape and size of every fracture is identical (Jafari & Babadagli, 2013; 62 

Khamforoush & Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002; Mourzenko et al., 2012; Robinson, 1983). This 63 

makes the percolation study relatively simple using numerical simulation. Others use the polydisperse model in which the 64 

sizes (Bour & Davy, 1997; Huseby & Thovert, 1997; Mourzenko et al., 2004; Mourzenko et al., 2005; Thovert et al., 2017; 65 

Zhao et al., 2016) and shapes (Barker, 2018; Thovert et al., 2017) of fractures are different. Commonly used fracture size 66 

distributions include the power law function (Mourzenko et al., 2004; Mourzenko et al., 2005; Zhao et al., 2016), exponential 67 

distribution (Catapano et al., 2023; Dowd et al., 2007; Fadakar Alghalandis, 2017; Xu et al., 2007; Zhu et al., 2022) and 68 

uniform distribution (Huseby & Thovert, 1997). For fracture orientations, many DFNs use isotropic models (uniform and 69 

random) (Barker, 2018; Bour & Davy, 1997; Charlaix et al., 1984; de Dreuzy et al., 2000; Huseby & Thovert, 1997; Jafari & 70 

Babadagli, 2013; Khamforoush & Shams, 2007; Khamforoush et al., 2008; Mourzenko et al., 2004; Mourzenko et al., 2012; 71 

Mourzenko et al., 2005; Robinson, 1983; Thovert et al., 2017; Yi, Tawerghi, 2009; Zhao et al., 2016) but anisotropic (with a 72 

single preferential orientation or several preferential orientations) models are also commonly used (Balberg & Binenbaum, 73 

1983; Khamforoush & Shams, 2007; Khamforoush et al., 2008; Manzocchi, 2002). The Fisher distribution (Khamforoush & 74 

Shams, 2007; Xu & Dowd, 2010) is the most commonly used type of distribution for three-dimensional fracture networks, 75 

while the von Mises distribution (Xu & Dowd, 2010) is the most commonly used for two-dimensional fracture networks. 76 

Physically, fractures related to tectonic movements are, in general, anisotropic (e.g., conjugate fractures generated around the 77 

maximum principal compressive stress (Zhao & Hou, 2017), while fractures associated with other causes, such as diagenesis, 78 

are typically isotropic (Dong et al., 2018). 79 

A common method used to obtain the percolation threshold of a DFN is first to calculate some indirect characteristic parameters 80 

of the fracture network and then evaluate the percolation threshold on the basis of these parameters. However, DFNs with the 81 

same indirect characteristic parameters may have quite different direct geometrical parameters (e.g., number of fractures, 82 

fracture size, and orientation) and, unfortunately, these geometrical parameters dictate the fracture connectivity and hence the 83 

percolation threshold (Dong et al., 2019). For example, the two fracture networks in Figure 1 have the same number of fractures, 84 

identical fracture lengths, and box-counting fractal dimensions, but the network in Figure 1a percolates between side A and B, 85 

while the other (Figure 1b) does not percolate. The different orientations of these two fracture models lead to different 86 

percolation characteristics. In this case, the box-counting fractal dimension provides a good measure of the complexity of the 87 

system but it ignores the effect of the preferential orientation of a fracture network. Although the indirect approach can simplify 88 

the evaluation of the percolation threshold of a fracture network, it may sometimes produce misleading results. In addition, 89 

most percolation thresholds based on the excluded volume method correspond to the occurrence of percolation on average 90 

(Barker, 2018; Yi & Tawerghi, 2009) (i.e., with 50% probability, p50) due to the stochastic nature of fracture networks (c.f. 91 

Section 2.2). The level of confidence in such thresholds may not be sufficient for some applications. For example, for 92 
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underground radioactive waste storage facilities, selecting storage sites that minimize the potential number of connected 93 

pathways to the biosphere is important. In this case, a low probability percolation threshold (p0, c.f., Section 2.2) named as 94 

zero-percolation threshold is more important for the connectivity analysis of the fracture systems (Dong et al., 2019). 95 

 96 

 97 

(a) Percolated DFN                      (b) Un-percolated DFN 98 

Figure 1: Schematic diagram of two DFN models with different percolation features. 99 

 100 

In practical engineering applications, it would be less problematic to use the direct relationship between the percolation 101 

threshold and fracture network parameters for connectivity assessments instead of resolving the problem by numerical 102 

simulations in every case. In general, it is not possible to establish such a relationship analytically due to the complexity of 103 

DFNs. In this work, Monte Carlo simulations of the number of fractures, 𝑛, fracture size (length), 𝐿 ,and fracture orientation, 104 

𝜙 are used to establish this relationship for two-dimensional DFN models, the fractures are represented by vectors representing 105 

line segments (Dong et al., 2020). In particular, fracture locations follow the Poisson distribution, fracture lengths follow the 106 

exponential distribution 𝑓(𝐿|𝜆), and fracture orientations follow the von-Mises distribution 𝑓(𝜙|𝜇, 𝜅), where 𝜆, 𝜇 and 𝜅 are 107 

their corresponding distribution parameters (see Section 2.1). The zero-percolation threshold (p0) equation 𝐿𝑡 = 𝑓(𝑛, 𝜇, 𝜅) 108 

was established by analysing results from an extensive set of numerical simulations for fracture networks with one set of 109 

fractures (fractures that exhibit similar orientations) (Ali & Jakobsen, 2011; Zeng et al., 2022) (see Sections 3.1-3.2). Besides 110 

DFN with exponential fracture length, given the widespread adoption of lognormal distribution 𝑓(𝐿|𝜇, 𝜎) in characterizing 111 

fracture length distributions within DFN, it is imperative to explore the implications of this distribution on the phenomenon of 112 

zero-percolation. Here, 𝜇, 𝜎  are parameters in lognormal distribution. Consequently, this paper extends its investigation 113 

beyond DFNs employing exponential distribution for fracture lengths to encompass those utilizing lognormal distribution, as 114 

detailed in Sections 3.3-3.4. 115 

The relationship was established by using a non-linear, multivariate fitting method for a relationship with invariant shapes 116 

of marginal functions; this is demonstrated by a simple example in Sections 2.2 and 2.3. The verification of the derived 117 

equations for zero-percolation will undergo a comprehensive series of tests in Section 4. 118 
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2 Principle of the mathematical method 119 

To mitigate ambiguity, the mathematical approach will utilise DFN with exponential distributions as an instance to elucidate 120 

the fundamental principles. Fracture parameters of a DFN model are described in Section 2.1. The percolation and percolation 121 

threshold of a DFN are described in Section 2.2. In Section 2.3, the non-linear fitting method is illustrated using a simple 122 

percolation example.  123 

2.1 Discrete fracture networks 124 

DFN modelling is a stochastic simulation method that uses marked point processes (MPP) (Dong et al., 2018c) in which 125 

fracture location (𝑥, 𝑦) is modelled by a point process (Figure 2a) following a Poisson, non-homogeneous cluster or Cox point 126 

process (Mardia et al., 2007); and fracture properties (such as length 𝐿, orientation 𝜙) are modelled at each point by marks 127 

(Figure 2b) following their respective probability distribution functions (e.g., 𝑓(𝐿) and 𝑓(𝜙)) (Dong et al., 2018; Fadakar 128 

Alghalandis, 2017; Xu & Dowd, 2010). To simulate a set of 𝑛 fractures with similar orientations, the location of a fracture 129 

(Figure 2a) is generated first followed by the generation of the associated marks (Figure 2b). Subsequently, these procedures 130 

are iterated n times to culminate in the ultimate implementation of the DFN (Figure 2c). 131 

 132 

 133 

(a) Point process             (b) Mark generation         (c) Discrete fracture network 134 

Figure 2: Schematic diagram of a two-dimensional DFN realisation. (a) Randomly generated fracture location; (b) Fracture 135 

properties (length, orientation) are generated from their probability distributions; (c) Repeat process (a) and (b) to generate the 136 

entire fracture network to account for the number of fractures in each fracture set as well as the number of fracture sets. 137 

 138 

 For 2D DFN models, fracture network parameters include the number of fracture sets, number of fractures 𝑛 in each 139 

fracture set, fracture size distribution 𝑓(𝐿) and fracture orientation distribution 𝑓(𝜙). The study area used in this work is 140 

100𝑚 × 100𝑚 so 𝑃20 = 𝑛𝑖 × 10−4(𝑚−2). Here, P20 is the fracture number per 2D unit area (Khamforoush et al., 2008). 141 

For fracture length, a fixed size 𝐿 can be used, or the following exponential distribution (Xu & Dowd, 2010) is commonly 142 

used: 143 
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𝑓(𝐿|𝜆) = {𝜆𝑒−𝜆𝐿    𝐿 ≥ 0
   0     𝐿 < 0

,  (1) 144 

where 𝜆 is the distribution parameter and therefore the average length, which in this case is 𝐿̅ = 1/𝜆. For fracture orientation, 145 

a von-Mises distribution (Fadakar Alghalandis, 2017; Xu & Dowd, 2010) is commonly used for 2D applications:  146 

𝑓(𝜙|𝜇, 𝜅) =
𝑒𝜅𝑐𝑜𝑠 (𝜙−𝜇)

2𝜋𝐼0(𝜅)
 ,  (2) 147 

where 𝜇 and 𝜅 are the distribution parameters, 𝐼0 is the modified Bessel function defined as: 𝐼0(𝜅) = ∑
𝜅2𝑖

22𝑖(𝑖!)2
+∞
𝑖=0 .  148 

 𝜇 and 1/𝜅 are analogous to the mean and variance of a Gaussian distribution. 𝜇 represents the main fracture orientation. 149 

For example, in both Figure 3a and Figure 3b, the main orientation is NE-SW (Figure 3e and Figure 3f) so 𝜇 = 𝜋/4, while in 150 

Figure 3c and Figure 3d, 𝜇 = 𝜋/2 (Figure 3g and Figure 3h), following the common practice in geotechnical applications of 151 

measuring the bearing angle from the North. 𝜅 is a measure of concentration (reciprocal of the measure of dispersion). A 152 

comparison of Figure 3a and Figure 3c with Figure 3b and Figure 3d shows that the dispersion of the fracture orientation 153 

increases as 1/𝜅 increases. When 𝜅 = 0, the distribution of fracture orientations is completely random. The DFN models 154 

were generated by a Matlab code based on the open-source toolbox ADFNE (Fadakar Alghalandis, 2017). 155 

 156 

 157 

(a) 𝜇 = 𝜋/4 𝜅 = 4   (b) 𝜇 = 𝜋/4 𝜅 = 24  (c) 𝜇 = 𝜋/2 𝜅 = 4  (d) 𝜇 = 𝜋/2 𝜅 = 24 158 

 159 

(e) 𝜇 = 𝜋/4 𝜅 = 4   (f) 𝜇 = 𝜋/4 𝜅 = 24   (g) 𝜇 = 𝜋/2 𝜅 = 4  (h) 𝜇 = 𝜋/2 𝜅 = 24 160 

Figure 3. DFN models showing different fracture orientations with different 𝝁, 𝜿, together with their corresponding rose diagrams. 161 

Fractures of the same colour in the DFN model are in the same cluster, while fractures in black are isolated ones. 162 

 163 

2.2 Percolation threshold of DFN models 164 

Percolation in a DFN means there is at least one cluster of fractures spanning the system (rock mass or reservoir) that allows 165 
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the fluid to permeate from one side to the other, as shown in Figure 4b, while Figure 4a shows a non-percolating DFN. 166 

Obviously, one can easily conclude that an increase in fracture number or fracture size can lead to the percolation of the system 167 

at some stage. In reality, the probability of percolation is a function of many different factors related to the DFN parameters 168 

(Khamforoush et al., 2008), of which fracture density (such as P20 and P21 for 2D and P30 and P32 for 3D applications) is 169 

the most critical. Here, P21 is the fracture length per 2D unit area, while P30 and P32 are the fracture number and area per 3D 170 

unit volume, respectively. 171 

 172 

 173 

(a) Un-percolated DFN                           (b) Percolated DFN 174 

Figure 4: Schematic diagram of percolation in DFN models. 175 

 176 

For simple fracture networks, the percolation thresholds can be found analytically. However, for most fracture networks, 177 

approaches such as Monte Carlo (MC) simulation are required (Yi, Tawerghi, 2009). Due to the random nature of a DFN 178 

model, its corresponding percolation status is also stochastic in nature. If 𝑁 independent simulations of a DFN are repeated 179 

for a group of parameters (𝑛, 𝐿, 𝜙) , resulting in 𝑁𝑝  number of cases where the fracture network percolates, then the 180 

percolation probability corresponding to the parameter set is 𝑃 = 𝑁𝑝/𝑁 (Barker, 2018; Yi & Tawerghi, 2009). In this work, 181 

p0, p50 ,and p100 represent the percolation probability of the DFN at 𝑃 = 0, 50% and 100%, respectively. Note in stochastic 182 

systems, P = 0% and 100% may not be strictly possible and therefore the definition used here means the probability calculated 183 

by 𝑁𝑝/𝑁 using a reasonable number N ( = 20 in this study). For stochastic systems, Figure 5 shows a worked example, in 184 

which the fracture orientations follow a von-Mises distribution (𝜇 = 90°, 𝜅 = 24) and fracture lengths are identical for each 185 

DFN. Twenty MC simulations ( 𝑁 = 20 ) were conducted using pairs of parameters ( 𝑛 = 20,30,40, … ,250  and 𝐿 =186 

0.06,0.08,0.1, … 0.8 ). The percolation probability, 𝑃 , calculated from the simulations, is shown in Figure 5, where the 187 

horizontal axes correspond to the number of fractures 𝑛 and the fracture length 𝐿, respectively, and the z axis is the percolation 188 

probability of the corresponding DFN model. 189 

 190 
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 191 

Figure 5: 𝑷 vs. 𝒏 and 𝑳 for DFN models when fracture orientations are random and fracture lengths are identical in each DFN. 192 

Each point is obtained by 400 times simulations, and in other words, one pair of (𝐧, 𝑳, 𝑷) can be obtained via 20 MC simulations, 193 

and each of MC simulation is repeated 20 times and then averaged. 194 

 195 

Percolation threshold assessment is related to the percolation probability discussed above. As shown in Figure 5, there is a 196 

transition band between cases where the DFN is absolutely non-percolating (𝑃 = 0) and percolating (𝑃 = 1). The definition 197 

of percolation threshold should, therefore, consider the application context that defines the acceptance level of the percolation 198 

probability. For example, when it comes to subterranean repositories for radioactive waste, the selection of storage locations 199 

that mitigate the likelihood of interconnecting pathways to the biosphere and geo-spheres (e.g., aquifer systems) is of 200 

paramount importance (Wei et al., 2017; Yi & Tawerghi, 2009). In this case, the percolation threshold should be defined as 201 

that corresponding to a percolation probability of 0. On the other hand, for energy resource extraction (e.g., unconventional 202 

gas and enhanced geothermal systems), full connectivity is critical and a fully percolated fracture network is desirable. In this 203 

case, the percolation threshold should be defined as that corresponding to a percolation probability of 1, or close to 1 (e.g., 204 

95%). Although the definition of percolation threshold could differ for different applications, the assessment of its relationships 205 

with DFN properties will be the same. Thus, for the work presented in this paper, the percolation threshold is defined as the 206 

case in which the percolation probability is 0. 207 

Figure 6a shows points close to percolation thresholds extracted from results similar to those of Figure 5 based on 20 MC 208 

simulations. In fact, 20×20=400 MC simulations are used to obtain each point to obtain a sample close to the real one. In order 209 

to reduce the computation cost, there are a few differences in fracture number 𝑛 and length 𝐿 compared with those in Figure 210 

5., i.e., 𝑛 = 𝑟𝑜𝑢𝑛𝑑(10𝑗) = 22, 32, 45, …, 251, j= 1.35, 1.5, 1.65, …, 2.4,  𝐿 = 10𝑘= 0.0316, 0.0322, 0.0327, …, 1, 𝑘 =211 

−1.5, −1.4925, −1.485, … ,0. The corresponding non-linear percolation threshold curve based on least-squares regression is 212 

𝐿𝑡 = 1.7518 × 𝑛−0.4308 with a correlation coefficient of 0.9288. When the specific number n is considered, an increase in L 213 

results in percolation. In this context, we hold the fracture number n to determine the fracture length threshold (denoted as 𝐿𝑡) 214 

for zero probability percolation, hence the utilisation of Lt and n. Conversely, if the fracture length is fixed, L and nt will be 215 

employed. This curve defines the percolation threshold in terms of parameter pairs of (𝑛, 𝐿𝑡). The DFN corresponding to any 216 

combination of parameters below this curve, namely 𝐿 < 𝐿𝑡, will have a percolation probability of 0. To assess the uncertainty 217 
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of this relationship, 20 groups of MC simulations as used in Figure 6a were employed to obtain the non-linear relationship 218 

with statistical dispersion and the results are shown in Figure 6b. The circles correspond to the averages of 20 groups of 20 219 

MC simulations (Figure 6a) and the error bars represent two times the corresponding standard deviations. The fitted non-linear 220 

relationship based on least-squares regression of the average values is 𝐿𝑡 = 1.592 × 𝑛−0.403 with a correlation coefficient is 221 

0.993. 222 

 223 

  224 

(a) Lt vs. n based on 20 MC simulations. The circle and half error 

bar represent average and two times standard deviation, 

respectively. 

(b) Lt vs. n. Each black point is one average corresponding to a red 

circle in (a). For each n, 20 groups of 20 MCs are implemented. 

 225 

(c) Percolation threshold of (𝑛, 𝐿𝑡) corresponding to different ∆. 226 

Figure 6: Percolation threshold of (𝒏, 𝑳𝒕) for the example DFN model. 227 

 228 

Obviously, fracture orientations will also affect the percolation threshold curves. As an example to demonstrate these 229 

effects, the von-Mises distribution is used to describe the distribution of fracture orientations for the DFN model used above. 230 

In this case, the fracture network parameters are (𝑛, 𝐿, 𝜇,𝜅). To simplify the demonstration, the concentration parameter 𝜅 is 231 

set to 24, similar to those shown in Figure 3b and Figure 3d;  𝜇 is set to values from 90° to 0° in 5° decrements. As the 232 

horizontal percolation is of interest here, to simplify the comparison, µ is transformed to an angle measured from the horizontal 233 

direction, i.e., ∆= |𝜇 − 90| , hence, ∆= 0°, 5°, … ,90° . The above curve fitting process was repeated and some results are 234 
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shown in Figure 6c. As ∆ decreases, the percolation threshold decreases. This is consistent with the fact that lower ∆ will 235 

increase the connectivity in the horizontal direction between the left and the right sides; percolation therefore requires a shorter 236 

fracture length and so the percolation threshold curve decreases. 237 

2.3 Non-linear relationship for the percolation threshold  238 

The general shapes of the percolation curves in Figure 6c can be considered to have similar shapes, which are represented as 239 

coloured curves in Figure 7. To understand further the relationship between 𝐿𝑡, 𝑛 and ∆, average values of 20 MC simulations 240 

are shown in Figure 7. Coloured curves refer to slices of different n and ∆. The left colour curves are the variation of 𝐿𝑡 and 241 

𝑛 with different values of ∆ , and the right coloured curves are the variations of 𝐿𝑡 and ∆ with different values of 𝑛. Clearly, 242 

the threshold fracture length increases as the number of fractures decreases and the relative orientation ∆ increases. This is 243 

because higher fracture density leads to greater percolation probability, a lower number of fractures requires longer fractures 244 

to maintain the same percolation probability. 245 

 246 

 247 

Figure 7: Simulated percolation threshold 𝑳𝒕 vs. (𝒏, ∆). For each pair of (𝒏, ∆), 20 MC simulations are implemented to obtained 248 

the average 𝑳𝒕. Coloured curves are lines corresponding to slices of different n and ∆. 249 

 250 

 From the results in Figure 7, 𝐿𝑡 = 𝑓(𝑛, ∆) is non-linear. To establish this relationship, the variation of 𝐿𝑡 with 𝑛 for 251 

different values of ∆  is examined first, i.e., 𝐿𝑡 = 𝑓1(𝑛)|∆ , followed by assessing the influence of  on the derived 𝑓1(𝑛) 252 

relationship. Note that at the second stage, cos ∆ is used instead of ∆ as it is more relevant to the quantification of the fracture 253 

projection length in the horizontal direction (𝑙𝑒𝑛/ cos ∆).  254 

Based on the simulation results discussed above, Eq. 5 is considered an appropriate fit to 𝑓1(𝑛):  255 

𝐿𝑡 = 𝑓1(𝑛) = 𝑎𝑛𝑏, (5) 256 

where 𝑎 and 𝑏 are parameters to be determined in the fitting process. The correlation coefficients for all curves for different 257 

 values (0°,5°…85°, 90°) are 0.9985,0.9895,…,0.9949, respectively. The high correlation coefficients (>0.96) confirm the 258 

suitability of using Eq. 5 to represent 𝑓1(𝑛). 259 
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The relationships between 𝑎, 𝑏 and cos ∆, shown in Figure 8, suggest linear relationships. Least squares regression was used 260 

to obtain the following equations: 261 

𝑎 = 𝑎1𝑐𝑜𝑠2∆ + 𝑎2𝑐𝑜𝑠∆ + 𝑎3, (6) 262 

𝑏 = 𝑏1𝑐𝑜𝑠2∆ + 𝑏2𝑐𝑜𝑠∆ + 𝑏3, (7) 263 

with correlation coefficients of 0.9919 and 0.9712, respectively; 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 are 2.726, -5.304, 2.887, -0.2552, 264 

0.6134, and -0.5724, respectively. 265 

 266 

 267 

(a) 𝑎 vs. cos ∆                               (b) 𝑏 vs. cos ∆ 268 

Figure 8: Influence of ∆ on a and b. 269 

 270 

By incorporating Eqs. 6 and 7 into Eq. 5 the final form of the expression of 𝐿𝑡 in terms of the fracture network parameters 271 

is obtained, as shown in Eq. 8. This form is then used directly in a bivariate least squares fitting using the Levenberg-272 

Marquardt algorithm (Ngia & Sjoberg, 2000), an optimal search technique for multivariate non-linear curve fitting. The 273 

original values of parameters shown in Eqs. 6 and 7 are used as initial inputs to the optimisation algorithm to improve 274 

computational efficiency and accuracy and the final derived parameters in this case are (𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) =275 

(2.4757, −4.9064, 2.7359, −0.1841,0.5097, −0.5336) . This set of values should be a more accurate reflection of the 276 

bivariate relationship than the values obtained in the two separate consecutive steps described above.  277 

𝐿̅𝑡 = (𝑎1𝑐𝑜𝑠2∆ + 𝑎2𝑐𝑜𝑠∆ + 𝑎3)𝑛(𝑏1𝑐𝑜𝑠2∆+𝑏2𝑐𝑜𝑠∆+𝑏3), (8) 278 

The final fitted surface is shown in Figure 9a. The points are the average values of 20 groups of MC simulation results 279 

shown in Figure 7. The suitability of the chosen functional form (Eq. 8) is confirmed by the fact that almost all the points are 280 

on the fitted surface. The plot in Figure 9b of simulated values of 𝐿𝑡 against those predicted by Eq. 8 gives an extremely high 281 

correlation coefficient of nearly 1. It is also encouraging that, on visual inspection, the fitted curve is conditionally unbiased. 282 

Although this workflow is useful for multivariate non-linear fitting problems in which marginal relationships are of invariant 283 
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shape, it should be noted that difficulties may arise for very high dimensions (Dong et al., 2016). 284 

The process described above can be summarised as an approach for fitting multiple variables. This approach starts by 285 

fitting a hypothetical relationship between 𝐿𝑡  and 𝑛  is initially fitted. Then, a new variable ∆ is added by analysing 286 

relationships with the parameters in the hypothetical relationship model. The parameters in the hypothetical relationship model 287 

are then replaced by expressions of the newly added variable. Ultimately, the relationship between between 𝐿𝑡 and (𝑛, ∆) can 288 

be obtained. This approach will be applied in the relationship fitting of Section 3.2, where the independent variables are 289 

(𝑛, 𝑐𝑜𝑠∆, 𝜅). 290 

 291 

     292 

Fitted percolation threshold surface and simulation data 293 

 294 

(b) Cross plot between simulated values of 𝐿𝑡 and those predicted by Eq. 8 295 

Figure 9: Bivariate percolation threshold fitting. 296 

 297 

3 Percolation analysis of DFN models 298 

3.1 Experiment design for DFN with exponential fracture lengths 299 

In the example used above, the lengths and orientations are identical for all fractures in a fracture network, which is not 300 

generally the case in practical applications. The relationship described above can be made more useful by extending it to cover 301 

realistic fracture networks. The following numerical experiments were all implemented on a dimensionless unit square (1×1). 302 

Based on previously published work (Dong et al., 2018c; Xu et al., 2007), the lengths of rock fractures can generally be 303 
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modelled by an exponential or lognormal distribution. In this work, the exponential distribution was used and therefore the 304 

average length 𝐿̅  is equal to 1/𝜆  where 𝜆  is the distribution parameter. The von-Mises distribution (Eq. 2) was used for 305 

fracture orientation.  306 

There are now three independent variables (𝑛, ∆, 𝜅)  and the aim is to establish the relationship 𝐿̅𝑡 = 𝑓(𝑛, ∆, 𝜅) . To 307 

simulate percolation states similar to those shown in Figure 5, DFNs corresponding to a combination of 81813200 (374,400) 308 

sets of variables are simulated and analysed, with each case simulated independently 20 times. The number of changes explored 309 

for each variable are listed in Table 1 310 

 311 

Table 1.  312 

 313 

Table 1: Parameters of DFNs in Section 3.2. 314 

Parameter Values analysed Number of values 

𝑛 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 1.5,1.65,1.8, … ,2.4 8 

∆= |𝜇 − 90| (𝑖 − 1) × 5°, 𝑖 = 1,2,3, … ,18 18 

𝜅 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 0.602, … ,2 13 

𝐿̅ = 1/𝜆 10𝑖 , 𝑖 = −1.5, −1.4925, −1.485, … ,0 200 

 315 

For each pair of (∆, 𝜅) , 20 independent realisations of DFNs with different 𝑛  and 𝐿̅  were generated to obtain the 316 

percolation threshold curves 𝐿̅𝑡 = 𝑓1(𝑛). These 20 MC simulations are used to calculate the percolation probability to obtain 317 

the points (𝑛, 𝐿̅𝑡), as shown in Figure 10. The points are the average values of 20 groups of 20 MC simulations and the error 318 

bars represent two times of the corresponding standard deviation. The relationship in Eq. 5 was used again for 𝐿̅𝑡 = 𝑓1(𝑛)|∆,𝜅. 319 

A comparison of Figure 6b and Figure 10 indicates that the standard deviations in this case are much larger, which is expected 320 

due to the variability in the lengths of fractures generated in simulations. Note that the uncertainty (reflected by the size of the 321 

error bar) increases as the number of fractures, 𝑛, decreases.  322 

 323 
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  324 

Figure 10: Variation of the percolation threshold as a function of 𝒏 for 𝜿 = 𝟑 and ∆= 𝟎. 325 

 326 

3.2. Determining percolation threshold equation for DFN with exponential fracture length 327 

Eq. 8 is only for a specific parameter 𝜅 . Establishing the full relationship, 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅) , requires the relationships 328 

between (𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3) in Eq. 8 and 𝜅 for different DFNs. The regression results for these parameters for different 𝜅 329 

values are shown in Table 2, which provides the input data for the final non-linear fitting of the percolation threshold function. 330 

The correlation coefficients for each of the regressions in the table are all greater than 0.98, which ensures the suitability of 331 

the derived relationships. 332 

 333 

Table 2: Regression parameters (𝐚𝟏, 𝐚𝟐, 𝐚𝟑, 𝐛𝟏, 𝐛𝟐, 𝐛𝟑) for different values of 𝛋. 334 

κ a1 a2 a3 b1 b2 b3 

3 30.1061 -0.3339 0.6003 -0.03176 0.08575 -0.329 

6 0.3431 -0.8712 0.8535 -0.08643 0.2164 -0.3734 

10 0.8132 -1.835 1.338 -0.1105 0.3005 -0.4269 

13 1.328 -2.77 1.765 -0.1555 0.3679 -0.4494 

18 1.883 -3.781 2.199 -0.2105 0.5097 -0.5119 

24 2.726 -5.304 2.887 -0.2552 0.6134 -0.5724 

32 3.212 -6.382 3.45 -0.3276 0.8044 -0.6671 

56 6.14 -11.59 5.724 -0.2222 0.6696 -0.6211 

75 8.671 -15.94 7.582 0.04139 0.3522 -0.5445 

 335 

The relationships between 𝑎1 and 𝜅, between 𝑎2 and 𝜅 and between 𝑎3 and 𝜅 are linear as described by Eqs. 9-11; 336 

the relationship between 𝑏1 and 𝜅, between 𝑏2 and 𝜅 and between 𝑏3 and 𝜅 are quadratic as shown in Eqs. 12- 14. The 337 
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correlation coefficients of this set of regression curves are all greater than 0.98. Overall, these variables display a clear and 338 

strong relationship that can be described by an appropriate functional form. Table 3 lists the constants in Eqs. 9-14 obtained 339 

by least squares regression. 340 

 341 

  342 

(a) 𝜅 vs. 𝑎1             (b) 𝜅 vs. 𝑎2            (c) 𝜅 vs. 𝑎3 343 

 344 

(d) 𝜅 vs. 𝑏1            (e) 𝜅 vs. 𝑏2             (f) 𝜅 vs. 𝑏3 345 

Figure 11: Relationship between 𝜿 and fitted parameters (𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒃𝟏, 𝒃𝟐, 𝒃𝟑). 346 

 347 

𝑎1 = 𝑎11𝜅+𝑎12, (9) 348 

𝑎2 = 𝑎21𝜅+𝑎22, (10) 349 

𝑎3 = 𝑎31𝜅+𝑎32, (11) 350 

𝑏1 = 𝑏11𝜅 + 𝑏12𝜅2 + 𝑏13, (12) 351 

𝑏2 = 𝑏21𝜅 + 𝑏22𝜅2 + 𝑏23 , (13) 352 

𝑏3 = 𝑏31𝜅 + 𝑏32𝜅2 + 𝑏33, (14) 353 

where 𝑎11, 𝑎12, 𝑎21, 𝑎22, 𝑎31, 𝑎32, 𝑏11, 𝑏12, 𝑏13, 𝑏21, 𝑏22, 𝑏23, 𝑏31, 𝑏32, 𝑏33 are parameters. 354 

 355 

Table 3: Parameters of Eqs. (9) - (14). 356 

𝑎11 𝑎12 𝑎21 𝑎22 𝑎31 𝑎32 𝑏11 𝑏12 

0.1177 -0.296 -0.2143 0.2192 0.096 0.4064 0.0002 -0.0182 
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𝑏13 𝑏21 𝑏22 𝑏23 𝑏31 𝑏32 𝑏33  

0.0299 -0.0004 0.0377 -0.0204 0.0002 -0.0165 -0.279  

 357 

Finally, the combined percolation equation 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅) can be obtained, as shown in Eq. 15. The correlation 358 

coefficient is again nearly 1 (0.99). 359 

𝐿̅
𝑡 = ((𝑎11𝜅+𝑎12)𝑥2 + (𝑎21𝜅+𝑎22)𝑥 + (𝑎31𝜅+𝑎32))𝑛

(
(𝑏11𝜅+𝑏12𝜅2+𝑏13)𝑥2

+(𝑏21𝜅+𝑏22𝜅2+𝑏23)𝑥+𝑏31𝜅+𝑏32𝜅2+𝑏33
)
, (15) 360 

where 𝑥 = cos ∆. 361 

Again, these parameters are used as the inputs for the final multivariate least squares optimisation based on the Levenberg-362 

Marquardt algorithm using all the simulation results. The final optimised values of the parameters in Eq. 15 are shown in Table 363 

4. These values are similar to the initial parameter values obtained by the step-wise fitting process described above but they 364 

have been refined by global optimisation. The correlation coefficient between the prediction and simulation values based on 365 

the initial parameters (Table 3) is only 0.43 due to the error propagation in the step-wise fitting process. After global 366 

optimisation, the correlation coefficient increases significantly to nearly 1 (0.99) based on the values listed in Table 4. 367 

 368 

Table 4: Parameters of the percolation equation in terms of fracture properties. 369 

𝑎11 𝑎12 𝑎21 𝑎22 𝑎31 𝑎32 𝑏11 𝑏12 

0.0643 -0.1587 -0.1188 -0.5551 0.0549 0.9823 -0.1612 0.2501 

𝑏13 𝑏21 𝑏22 𝑏23 𝑏31 𝑏32 𝑏33  

-0.0945 0.2633 -0.0657 0.1313 -0.2025 0.1519 -0.4730  

 370 

To visualize the relationships in Eq. 28, several surfaces of 𝐿̅𝑡 vs (𝑛, ∆) corresponding to different values 𝜅 (4, 18, 42 and 371 

75) are shown in Figure 12. In general, higher 𝜅 values correspond to higher percolation threshold values. This is because 372 

higher 𝜅  values correspond to lower variation of fracture orientations, which leads to lower probabilities of fracture 373 

intersections. Consequently, this reduces the connectivity of the fracture network and hence longer fractures are needed to 374 

reach percolation. 375 

 376 

https://doi.org/10.5194/egusphere-2025-2440
Preprint. Discussion started: 17 June 2025
c© Author(s) 2025. CC BY 4.0 License.



17 /30 

 377 

(a) 𝜅 = 4                                     (b) 𝜅 = 18 378 

 379 

(c) 𝜅 = 42                                  (d) 𝜅 = 75 380 

Figure 12: Extracted surfaces from the final percolation threshold equation. 381 

 382 

 Eq. 15 is derived for the region of a dimensionless unit square, the result is expected to be applicable to areas at different 383 

scales (𝑦 × 𝑦). For these cases, the scaled percolation threshold 𝐿̅𝑡𝑠 will be used (Eq. 16) revised from Eq. 15. If the average 384 

fracture length of a fracture network 𝐿̅ ≥ 𝐿̅𝑡𝑠, there is more probability reach percolation.  385 

𝐿̅𝑡𝑠 = 𝐿̅𝑡 × 𝑦,  (16) 386 

3.3 Design of experiments for DFN with lognormal fracture lengths 387 

In contrast to example used above, the length of rock fractures in this section is modelled using a lognormal distribution. The 388 

mean 𝐿̅ and standard deviation 𝜈 of fracture length are utilised to calculate the lognormal distribution parameters 𝜇 and σ 389 

as well as the probability density function, as shown in Eqs. 17-19. Five independent variables (𝐿̅, 𝜈, ∆, 𝜅) are considered with 390 

the aim of establishing the relationship 𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆, 𝜅). In this context, 𝑛𝑡 represents the fracture number threshold at which 391 

the percolation threshold may be reached at a low probability (p0) in DFNs characterized by the parameters (𝐿̅, 𝜈, ∆, 𝜅). In 392 

Section 3.1, the exponential distribution of fracture length is defined by a single parameter. Consequently, the fracture length 393 

is selected to determine the threshold corresponding to 𝑝0. Given that the fracture length is governed by two parameters (𝐿̅, 𝜈), 394 

the parameters corresponding to the fracture length distribution are not selected. Instead, the fracture number is chosen. 395 
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𝜇 = log(𝐿̅2/√𝜈 + 𝐿̅2), (17) 396 

𝜎 = √log(𝜈 ∕ 𝐿̅2 + 1), (18) 397 

𝑓(𝐿̅|𝜇, 𝜎) =
1

𝐿̅σ√2𝜋
ⅇ

−(ln 𝐿̅−𝜇)2

2𝜎2 , 𝐿̅ > 0, (19) 398 

Simulations and analyses were conducted corresponding to the 8×6×6×18×13 (684,400) variable combinations for the 399 

DFNs, with each case independently simulated 20 times. The number of variations for each variable are listed in Table 5. 400 

 401 

Table 5: Parameters of DFNs in Section 3.3. 402 

Parameter Values analysed Number of values 

𝑛 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 1.5,1.65,1.8, … ,2.4 8 

𝐿̅ 0.05,0.12,0.19,0.26,0.33,0.4 6 

𝜈 2,4,6,8,10,12 6 

∆= |𝜇 − 90| (𝑖 − 1) × 5°, 𝑖 = 1,2,3, … ,18 18 

𝜅 𝑟𝑜𝑢𝑛𝑑(10𝑖), 𝑖 = 0.602, … ,2 13 

 403 

3.4 Derivation of percolation threshold equation for DFN with lognormal fracture lengths 404 

The multivariable fitting process for the DFN with lognormal fracture lengths is analogous to that described in Section 3.2. 405 

Initially, the hypothetical relationship between 𝑛𝑡  and 𝐿̅  is fitted (Eq. 20). Subsequently, by analysing the relationship 406 

between the parameters in the hypothetical model, new variables 𝜈, ∆, and 𝜅 are sequentially incorporated. The expressions 407 

for the newly added variables are then used to replace the parameters in the hypothetical model. Ultimately, this yields the 408 

fitted relationship between 𝑛𝑡 and (𝐿̅, 𝜈, ∆, 𝜅), with the fitting process detailed in Eqs. 20-23, where 𝑥 = cos ∆. 409 

𝑛𝑡 = 𝑓(𝐿̅) = 𝑎𝐿̅𝑏 + 𝑐, (20) 410 

𝑛𝑡 = 𝑓(𝐿̅, 𝜈) = 𝑎1ⅇ𝑎2𝜈𝐿̅𝑏1 + 𝑐1𝜈𝑐2, (21) 411 

𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆) = (𝑎11𝑥 + 𝑎12)ⅇ𝑎22𝜈𝐿̅𝑏11𝑥+𝑏12 + 𝑐11𝜈𝑐12𝑥+𝑐13, (22) 412 

𝑛𝑡 = 𝑓(𝐿̅, 𝜈, ∆, 𝜅) = [(𝑑1𝜅2+𝑑2𝜅 + 𝑑3)𝑥 + (𝑑4𝜅2+𝑑5𝜅+𝑑6)]ⅇ
(𝑑7

𝜅
𝐿̅

+𝑑8)𝜅𝜈𝐿̅𝑑9𝑥+
2 𝑑10𝜅+𝑑11

                                                                                                                                +𝑑12𝜈𝑑13𝑥2+𝑑14

, (23) 413 

Similarly, the parameters are used as inputs for the final multivariable least squares optimisation based on the Levenberg-414 

Marquardt algorithm, utilising all simulation results. The final optimised values of the parameters in Eq. 23 are presented in 415 

Table 6.  416 
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 417 

Table 6: Parameters of the percolation equation in terms of fracture properties. 418 

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6 𝑑7 

-0.0344 0.0560 0.2381 0.0335 0.0418 0.0053 -0.0002 

𝑑8 𝑑9 𝑑10 𝑑11 𝑑12 𝑑13 𝑑14 

0.0091 0.3048 0.0174 -1.4019 74.7657 -0.0001 0.0174 

 419 

To visualise the relationships in Eq. 23, several surfaces of 𝑛𝑡 vs (𝐿̅, 𝜈, ∆, 𝜅) corresponding to different values of 𝜈 (2, 420 

4, and 12) and 𝜅 (2, 7, and 10) are presented in Figure 13. Generally, higher ∆ and lower 𝐿̅ result in increased percolation 421 

threshold 𝑛𝑡.  422 

 423 

 424 

(a)  𝜈 = 4, 𝜅 = 2                            (b)  𝜈 = 4, 𝜅 = 7 425 

 426 

(c)  𝜈 = 2, 𝜅 = 10                         (d)  𝜈 = 12, 𝜅 = 10 427 

Figure 13: Extracted surfaces from the final percolation threshold equation. 428 

 429 

Eq. 23 is derived for a dimensionless unit square, with its results expected to be applicable to regions of varying scales 430 

(𝑦 × 𝑦). For these scenarios, the percolation threshold 𝑛̅𝑡 will be adjusted using a scaling modification from Eq. 23, resulting 431 

in Eq. 24. If the number of fractures 𝑁 is more than 𝑛̅𝑡𝑠, the probability of achieving percolation will be high. 432 
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𝑛𝑡𝑠 = 𝑛𝑡 × 𝑦𝑛, (24) 433 

where 𝑦𝑛 is the scaling correction factor, 𝑦𝑛 = log10 (
1

𝑦
+ 20). 434 

4. Validation of the derived percolation threshold equation 435 

4.1 Percolation analysis of fracture networks not used for deriving the threshold equation 436 

(1) DFN with exponential fracture length. To test the performance of the derived zero percolation thresholds (Eq. 16), 437 

additional DFN models with different parameters (𝑛 = 100,200 , ∆= 3°, 63° , 𝜅 = 5,40,50 ) at different scales (2𝑚 × 2𝑚 , 438 

60𝑚 × 60𝑚 , 300𝑚 × 300𝑚 , 900𝑚 × 900𝑚 , 1100𝑚 × 1100𝑚 , 1200𝑚 × 1200𝑚 , 1300𝑚 × 1300𝑚 ) were generated 439 

for percolation analysis. The percolation thresholds obtained from Eq. 16 and numerical simulation are shown in Figure 14. 440 

The close agreement between the predicted thresholds and the simulation results demonstrates that the derived relationships 441 

(Eq. 16) perform extremely well for predicting of zero percolation thresholds of DFNs with different parameters at different 442 

study scales. 443 

 444 

  445 

Figure 14: Validation of Eq. 16 in study areas on different scales. 446 

 447 

(2) DFN with lognormal fracture length. To test the derived zero percolation thresholds (Eq. 24), additional DFN models 448 

with different parameters ( 𝐿̅ = 0.15,0.25 ,  𝜈 = 5,7 ,  ∆= 26°, 56° , 𝜅 = 5,9 ) at different scales (2𝑚 × 2𝑚 , 60𝑚 × 60𝑚 , 449 

300𝑚 × 300𝑚 ) were generated for percolation analysis. The percolation thresholds obtained from Eq. 24 and numerical 450 

simulations are depicted in Fig. 15. The remarkable concurrence between the predicted thresholds and the simulation outcomes 451 

underscores the robust performance of the derived relationships (Eq. 24) in accurately forecasting percolation thresholds across 452 

diverse parameter configurations and study scales for DFNs. 453 

 454 
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  455 

Fig. 15: Validation of Eq. 24 in study areas on different scales. 456 

 457 

4.2 Comparison with analytical solutions of simple fracture networks  458 

The equations derived in Section 3.2 are for stochastic fracture networks with fracture lengths that follow an exponential 459 

distribution and fracture orientations that follow a von-Mises distribution. Because of the complexity of such fracture networks, 460 

there is no analytical solution for the corresponding percolation threshold. However, for simple fracture networks, where both 461 

fracture location and orientation follow completely random distributions and the fracture length is identical, the analytical 462 

solution for the percolation threshold of fracture length is (Balberg et al., 1984; Berkowitz, 1995): 463 

𝐿𝐶 = 4.2/√𝜋𝜌, (25) 464 

where 𝜌 is the fracture density (=P20) calculated as 𝜌 = 𝑛/𝑦2 and 𝑦2 is the area of the study region. For the case of varying 465 

fracture length, the corresponding threshold is: 466 

𝐿̅𝑡 = √𝐿𝐶
2 − 𝜎2,  (26) 467 

where 𝜎2 is the variance of fracture length distribution. If the length follows an exponential distribution with parameter , Eq. 468 

26 becomes (Berkowitz, 1995). Therefore, this section utilises fracture networks characterized by an exponential distribution 469 

of fracture lengths as a case study to compare the derived thresholds with analytical solutions. 470 

𝐿̅𝑡 = 𝐿𝐶/√2 = 4.2/√
2𝜋𝑛

𝑦2 ≈ 1.676 𝑦𝑛−0.5, (27) 471 

 This is a special case covered by the relationships derived in this work by setting 𝜅 = 0  for a completely random 472 

distribution of fracture orientation and ignoring cos ∆ as it is now irrelevant. Eq. 16 then becomes: 473 

𝐿̅𝑡𝑠 = 𝑦 𝑎32𝑛𝑏33 , (28) 474 

where 𝑎32 = 0.9823, 𝑏33 = −0.4730 The equation can be further simplified to: 475 

𝐿̅𝑡𝑠 = 0.9823𝑦𝑛−0.4730, (29) 476 
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which should be compared to Eq. 27. Note that the difference between the two equations is due to the different 477 

probabilities used to derive the percolation threshold. The theoretical solution is for a percolation probability of 50% while the 478 

derived relationship is for a percolation probability of 0%, as discussed above, and therefore it should be smaller.  479 

There is a striking similarity between the analytical solution for p50 and the solution we derived for p0. The reasons why 480 

these two equations are so similar and what the factor of two in the first coefficient represents are important. These will be 481 

discussed in future work instead of here since it is not the focus of this work. 482 

To compare the solutions, fracture networks with 𝑛 = 100, 200, 300, 400 and 500 in a square of 75𝑚 × 75𝑚 are used 483 

for the simulations. Percolation thresholds corresponding to 𝑝0, 𝑝50 and 𝑝100 are calculated by Monte Carlo simulations 484 

and the results are shown in Figure 16. As demonstrated, the analytical solution is close to the p50 percolation threshold with 485 

an average absolute difference of 4.9%. On the other hand, the solution based on the derived equation is close to that of 𝑝0 486 

with an average absolute difference of 11.4%.  487 

 488 

  489 

Figure 16: Comparison of percolation thresholds determined by the analytical solution, the derived equation, and numerical 490 

simulations. The points are the averages of 20 groups of MC simulations and the error bars are three times the corresponding 491 

standard deviations. 492 

 493 

4.3 Percolation analysis of real fracture networks using the derived equation 494 

Two real fracture networks, as shown in Figure 17a and Figure 18a, are used to demonstrate further the application of the 495 

derived percolation threshold equations. Figure 17a shows a set of fractures traces on a rock outcrop taken from Wilson (Wilson, 496 

2001). Figure 18a are fracture traces in the deformation bands on the Valley of Fire State Park, Nevada (Barton, Hsieh, 1989). 497 

Mid-points of the fractures are used to represent the fracture locations, as shown in Figure 17b and Figure 18b, respectively. 498 

They are all considered to follow approximately the Poisson distribution. The number of fractures, 𝑛, in the three systems are 499 

35, 186. Clearly there is one dominant direction of fracture orientations in these systems, as illustrated in the rose diagrams 500 

shown in Figure 17c and Figure 18c. The orientation dispersion parameters (𝜅) were calculated to be 145.18 and 25.68. For 501 

fracture length, the histogram in Figure 17d indicates an approximately exponential distribution for the first fracture set. For 502 
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the second and third sets, the histograms (Figure 18d) suggest lognormal distributions. The average fracture lengths 𝐿̅ are 503 

0.249m, 0.282mm, 0.9544m and the side lengths 𝑦 of study areas are 2.5m, 8mm, 7m, respectively. 504 

Using Eqs. 23 and 24 with the parameters (𝐿̅, 𝜈, ∆, 𝜅) listed in Table 7, the calculated percolation thresholds (𝑦𝑛 × 𝑛𝑡) in 505 

the horizontal and vertical directions can be calculated. For Figure 17a, the calculated percolation thresholds are 126 506 

(horizontal) and 94 (vertical). The threshold in the horizontal direction is much greater than that in the vertical direction due 507 

to the fact that fractures are mainly vertical in this case. The fracture numbers are all less than these two thresholds hence the 508 

fracture network is not percolated in both directions. This conclusion can easily be confirmed in this case by visual inspection 509 

of the fracture system displayed in Figure 17a.  510 

 511 

 512 

(a) Fracture network from an outcrop          (b) Fracture centres 513 

   514 

   (c) Fracture orientation                    (d) Fracture length 515 

Figure 17: A set of fractures from an outcrop (Wilson, 2001) and the network properities. 516 

 517 

Table 7: Parameters of three real fracture networks in Figure 17a and percolation assessment. 518 

Direction 𝑁 ∆(°) 𝑣 𝜅 𝐿̅ 𝑦 𝑦𝑛 × 𝑛𝑡  𝑁 ≥ 𝑦𝑛 × 𝑛𝑡  Percolated 

Horizontal 35 72.47 0.18 145.18 0.25𝑚 2.5𝑚 126 No No 
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Vertical 35 17.53 0.18 145.18 0.25𝑚 2.5𝑚 94 No No 

 519 

For the fracture set (Figure 18a), the average fracture length is 1.19m. The horizontal percolation threshold 𝑦 × 𝐿̅𝑡  is 520 

1.34m and the vertical threshold is 0.69m. The average fracture length in this case is greater than the vertical threshold and 521 

therefore the fracture network is percolated vertically but not horizontally. On close inspection of Figure 18a, there is a cluster 522 

of fractures (marked in red) connecting the top and bottom sides of the study region.  523 

 524 

Table 8: Parameters of three real fracture networks in Figure 18a and percolation assessment. 525 

Direction 𝑁 ∆(°)  𝜅 𝑦 𝐿̅ 𝑦 × 𝐿̅𝑡 𝐿̅ ≥ 𝑦 × 𝐿̅𝑡  Percolated 

Horizontal 146 80.54  25.68 7𝑚 1.19𝑚 1. 34𝑚 No No 

Vertical 146 9.46  25.68 7𝑚 1.19𝑚 0.69𝑚 Yes Yes 

 526 

 527 

(a) Fracture network from an outcrop          (b) Fracture centres 528 

 529 

  (c) Fracture orientation                   (d) Fracture length 530 

Figure 18: Fracture traces of deformation bands in the Valley of Fire State Park, Nevada (Barton, Hsieh, 1989) and the corresponding 531 

network properties. 532 

 533 
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5 Conclusions  534 

Percolation analysis of fracture networks is important for many applications, including oil and gas recovery, geothermal energy 535 

exploitation, hydrology, and groundwater protection in radioactive waste storage. In this paper, we focus on the percolation 536 

threshold relevant to rock impermeability, which is critically important for the safe underground storage of waste and energy 537 

materials. 538 

Our approach to the calculation of the percolation threshold makes direct use of the characteristic parameters of 2D 539 

fracture network, in particular the number of fractures 𝑛, the fracture size (length) 𝐿̅ and the fracture orientation . This differs 540 

from the simplified approaches of using indirect characteristic parameters (e.g., fractal dimension), which could produce 541 

misleading results because fracture orientation is not considered. The assessment of fracture networks in this research was 542 

made under the following assumptions: (1). the centre points of fractures are randomly and independently distributed in space; 543 

(2). the lengths of fractures follow an exponential distribution; and (3). the orientations of fractures follow a von-Mises 544 

distribution, the parameters of which are the mean orientation 𝜇 and the concentration parameter 𝜅. The relationship between 545 

fracture network parameters and the corresponding percolation threshold is obtained from a large number of simulations. A 546 

non-linear multivariate fitting process was used to derive the final prediction equation for the percolation threshold in the form 547 

of 𝐿̅𝑡 = 𝑓(𝑛, 𝑐𝑜𝑠∆, 𝜅). The derived equation provides a reliable relationship and an efficient way to estimate the connectivity 548 

and percolation state of a fracture network based directly on its parameters. The relationship was cross-validated using a 549 

published analytical solution and was further applied to three real fracture networks. The results demonstrate that the derived 550 

relationship can be used for fracture networks at different scales using a rescaling coefficient and can also be used for the 551 

assessment of percolation in different directions. The derived relationship is a useful extension for rock impermeability 552 

evaluation (zero probability percolation p0), compared with the commonly used percolation assessment based on excluded 553 

volume, which corresponds only to the occurrence of percolation on average (i.e., 50% probability percolation, p50). 554 

Additionally, this work also studies fracture network models with log-normally distributed fracture lengths and derives zero 555 

percolation formulas, reaching conclusions similar to those mentioned above. 556 

Due to the complexity of multiple sets of fractures, the work only is limited to 2D fracture network with a single set. In 557 

future work, the work will be extended to cover 2D and 3D fracture systems with multiple sets of fractures. 558 
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